Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy

نویسندگان

  • Yu-Hsin Wang
  • Shi-Ping Chen
  • Ai-Ho Liao
  • Ya-Chuen Yang
  • Cheng-Ru Lee
  • Cheng-Han Wu
  • Pei-Chun Wu
  • Tzu-Ming Liu
  • Churng-Ren Chris Wang
  • Pai-Chi Li
چکیده

Plasmonic photothermal therapy (PPTT) using plasmonic nanoparticles as efficient photoabsorbing agents has been proposed previously. One critical step in PPTT is to effectively deliver gold nanoparticles into the cells. This study demonstrates that the delivery of gold nanorods (AuNRs) can be greatly enhanced by combining the following three mechanisms: AuNRs encapsulated in protein-shell microbubbles (AuMBs), molecular targeting, and sonoporation employing acoustic cavitation of microbubbles (MBs). Both in vitro and in vivo tests were performed. For molecular targeting, the AuMBs were modified with anti-VEGFR2. Once bound to the angiogenesis markers, the MBs were destroyed by ultrasound to release the AuNRs and the release was confirmed by photoacoustic measurements. Additionally, acoustic cavitation was induced during MB destruction for sonoporation (i.e., increase in transient cellular permeability). The measured inertial cavitation dose was positively correlated with the temperature increase at the tumor site. The quantity of AuNRs delivered into the cells was also determined by measuring the mass spectrometry and observed using third-harmonic-generation microscopy and two-photon fluorescence microscopy. A temperature increase of 20 °C was achieved in vitro. The PPTT results in vivo also demonstrated that the temperature increase (>45 °C) provided a sufficiently high degree of hyperthermia. Therefore, synergistic delivery of AuNRs was demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment

Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation rel...

متن کامل

Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical proper...

متن کامل

Synthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy

Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...

متن کامل

Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy

The search for efficient plasmonic photothermal therapies using nonharmful pulse laser irradiation at the near-infrared (NIR) is fundamental for biomedical cancer research. Therefore, the development of novel assembled plasmonic gold nanostructures with the aim of reducing the applied laser power density to a minimum through hot-spot-mediated cell photothermolysis is an ongoing challenge. We de...

متن کامل

Mapping Photothermally Induced Gene Expression in Living Cells and Tissues by Nanorod-Locked Nucleic Acid Complexes

The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014